Copied to
clipboard

G = C2×C23.D7order 224 = 25·7

Direct product of C2 and C23.D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C23.D7, C24.D7, C232Dic7, C23.32D14, (C22×C14)⋊4C4, (C2×C14).44D4, C14.62(C2×D4), C142(C22⋊C4), (C23×C14).2C2, C222(C2×Dic7), (C2×C14).60C23, C14.28(C22×C4), (C2×Dic7)⋊7C22, (C22×Dic7)⋊7C2, C2.9(C22×Dic7), C22.25(C7⋊D4), C22.27(C22×D7), (C22×C14).41C22, C73(C2×C22⋊C4), (C2×C14)⋊8(C2×C4), C2.4(C2×C7⋊D4), SmallGroup(224,147)

Series: Derived Chief Lower central Upper central

C1C14 — C2×C23.D7
C1C7C14C2×C14C2×Dic7C22×Dic7 — C2×C23.D7
C7C14 — C2×C23.D7
C1C23C24

Generators and relations for C2×C23.D7
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e7=1, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 350 in 132 conjugacy classes, 65 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C22×C4, C24, Dic7, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C2×Dic7, C2×Dic7, C22×C14, C22×C14, C22×C14, C23.D7, C22×Dic7, C23×C14, C2×C23.D7
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, Dic7, D14, C2×C22⋊C4, C2×Dic7, C7⋊D4, C22×D7, C23.D7, C22×Dic7, C2×C7⋊D4, C2×C23.D7

Smallest permutation representation of C2×C23.D7
On 112 points
Generators in S112
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 29)(23 30)(24 31)(25 32)(26 33)(27 34)(28 35)(57 106)(58 107)(59 108)(60 109)(61 110)(62 111)(63 112)(64 99)(65 100)(66 101)(67 102)(68 103)(69 104)(70 105)(71 92)(72 93)(73 94)(74 95)(75 96)(76 97)(77 98)(78 85)(79 86)(80 87)(81 88)(82 89)(83 90)(84 91)
(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)(91 98)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(71 78)(72 79)(73 80)(74 81)(75 82)(76 83)(77 84)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)(91 98)(99 106)(100 107)(101 108)(102 109)(103 110)(104 111)(105 112)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 75 15 61)(2 74 16 60)(3 73 17 59)(4 72 18 58)(5 71 19 57)(6 77 20 63)(7 76 21 62)(8 82 22 68)(9 81 23 67)(10 80 24 66)(11 79 25 65)(12 78 26 64)(13 84 27 70)(14 83 28 69)(29 103 43 89)(30 102 44 88)(31 101 45 87)(32 100 46 86)(33 99 47 85)(34 105 48 91)(35 104 49 90)(36 110 50 96)(37 109 51 95)(38 108 52 94)(39 107 53 93)(40 106 54 92)(41 112 55 98)(42 111 56 97)

G:=sub<Sym(112)| (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,99)(65,100)(66,101)(67,102)(68,103)(69,104)(70,105)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(78,85)(79,86)(80,87)(81,88)(82,89)(83,90)(84,91), (57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,75,15,61)(2,74,16,60)(3,73,17,59)(4,72,18,58)(5,71,19,57)(6,77,20,63)(7,76,21,62)(8,82,22,68)(9,81,23,67)(10,80,24,66)(11,79,25,65)(12,78,26,64)(13,84,27,70)(14,83,28,69)(29,103,43,89)(30,102,44,88)(31,101,45,87)(32,100,46,86)(33,99,47,85)(34,105,48,91)(35,104,49,90)(36,110,50,96)(37,109,51,95)(38,108,52,94)(39,107,53,93)(40,106,54,92)(41,112,55,98)(42,111,56,97)>;

G:=Group( (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34)(28,35)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,99)(65,100)(66,101)(67,102)(68,103)(69,104)(70,105)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(78,85)(79,86)(80,87)(81,88)(82,89)(83,90)(84,91), (57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(71,78)(72,79)(73,80)(74,81)(75,82)(76,83)(77,84)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98)(99,106)(100,107)(101,108)(102,109)(103,110)(104,111)(105,112), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,75,15,61)(2,74,16,60)(3,73,17,59)(4,72,18,58)(5,71,19,57)(6,77,20,63)(7,76,21,62)(8,82,22,68)(9,81,23,67)(10,80,24,66)(11,79,25,65)(12,78,26,64)(13,84,27,70)(14,83,28,69)(29,103,43,89)(30,102,44,88)(31,101,45,87)(32,100,46,86)(33,99,47,85)(34,105,48,91)(35,104,49,90)(36,110,50,96)(37,109,51,95)(38,108,52,94)(39,107,53,93)(40,106,54,92)(41,112,55,98)(42,111,56,97) );

G=PermutationGroup([[(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,29),(23,30),(24,31),(25,32),(26,33),(27,34),(28,35),(57,106),(58,107),(59,108),(60,109),(61,110),(62,111),(63,112),(64,99),(65,100),(66,101),(67,102),(68,103),(69,104),(70,105),(71,92),(72,93),(73,94),(74,95),(75,96),(76,97),(77,98),(78,85),(79,86),(80,87),(81,88),(82,89),(83,90),(84,91)], [(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97),(91,98),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(71,78),(72,79),(73,80),(74,81),(75,82),(76,83),(77,84),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97),(91,98),(99,106),(100,107),(101,108),(102,109),(103,110),(104,111),(105,112)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,75,15,61),(2,74,16,60),(3,73,17,59),(4,72,18,58),(5,71,19,57),(6,77,20,63),(7,76,21,62),(8,82,22,68),(9,81,23,67),(10,80,24,66),(11,79,25,65),(12,78,26,64),(13,84,27,70),(14,83,28,69),(29,103,43,89),(30,102,44,88),(31,101,45,87),(32,100,46,86),(33,99,47,85),(34,105,48,91),(35,104,49,90),(36,110,50,96),(37,109,51,95),(38,108,52,94),(39,107,53,93),(40,106,54,92),(41,112,55,98),(42,111,56,97)]])

C2×C23.D7 is a maximal subgroup of
C24.D14  C24.2D14  C22⋊C4×Dic7  C24.44D14  C23.42D28  C24.3D14  C24.4D14  C24.46D14  C23⋊Dic14  C24.6D14  C24.7D14  C24.47D14  C24.8D14  C24.9D14  C24.10D14  C23.44D28  C24.12D14  C24.13D14  C24.14D14  C23.16D28  C24.62D14  C24.63D14  C23.27D28  C23.28D28  C24.18D14  C24.19D14  C24.20D14  C24.21D14  C25.D7  C232Dic14  C2×D7×C22⋊C4  C24.24D14  C24.31D14  C24.32D14  C24.33D14  C24.35D14  C2×C4×C7⋊D4  C2×D4×Dic7  C24.38D14  C247D14  C24.42D14
C2×C23.D7 is a maximal quotient of
C24.4Dic7  C24.63D14  C23.27D28  (D4×C14)⋊6C4  C24.18D14  C24.19D14  (Q8×C14)⋊6C4  (Q8×C14)⋊7C4  C4○D4⋊Dic7  C28.(C2×D4)  (D4×C14).11C4  (D4×C14)⋊9C4  (D4×C14).16C4  (D4×C14)⋊10C4  C25.D7

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H7A7B7C14A···14AS
order12···222224···477714···14
size11···1222214···142222···2

68 irreducible representations

dim1111122222
type++++++-+
imageC1C2C2C2C4D4D7Dic7D14C7⋊D4
kernelC2×C23.D7C23.D7C22×Dic7C23×C14C22×C14C2×C14C24C23C23C22
# reps142184312924

Matrix representation of C2×C23.D7 in GL4(𝔽29) generated by

28000
02800
0010
0001
,
28000
02800
0010
00028
,
28000
0100
00280
00028
,
1000
0100
00280
00028
,
1000
0100
00240
00023
,
17000
0100
00023
0050
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,28],[28,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,24,0,0,0,0,23],[17,0,0,0,0,1,0,0,0,0,0,5,0,0,23,0] >;

C2×C23.D7 in GAP, Magma, Sage, TeX

C_2\times C_2^3.D_7
% in TeX

G:=Group("C2xC2^3.D7");
// GroupNames label

G:=SmallGroup(224,147);
// by ID

G=gap.SmallGroup(224,147);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,48,362,6917]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^7=1,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽